

ADSORPTION OF REACTIVE BLUE 19 DYE ON MAGNETIC CHITOSAN MICROPARTICLES

Alina Ibanescu^a, Marcel Ionel Popa^a, Doina Hritcu^a, Ovidiu Chiscan^b

 ^aFaculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73, Bd. Prof. dr. docent Dimitrie Mangeron, 700050, Iasi, Romania
^bDepartment of Physics, "Alexandru Ioan Cuza" University, 11, Carol I Bd., 700506, Iasi, Romania

Objectives: Magnetite/chitosan composite (MCC) microparticles produced by a previously developed procedure [1] were evaluated as nonexpensive, environmentally friendly adsorbents for removal of synthetic textile dye Reactive Blue 19 (RB 19) from simulated waste water.

Materials and methods:

•Magnetite/chitosan composite (MCC) microparticles with an average size of 169 μ m (Dv)/73 μ m (Dn) and saturation magnetization of 17.6 emu/g were prepared by an in-situ procedure

•Batch adsorption tests showed that the extent of RB 19 adsorption was dependent on dye concentration, adsorbent concentration, contact time, pH and temperature.

•The adsorption isotherms were analyzed using the Langmuir and Freundlich models.

•The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models.

Results

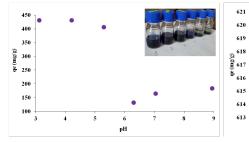


Figure 2. Effect of pH

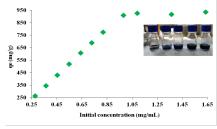
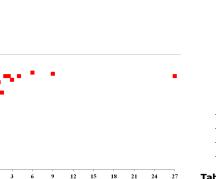
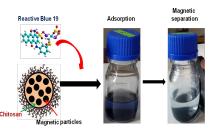




Figure 3. Effect of initial dye concentration

Figure 1. Schematic representation of adsorption process

Table 1. Desorption and re-use

Eluent	% Desorption					
Aq.NaOH	8-15					
(pH=13)						
Aq.NaOH+surfactant	55-62					
(pH=11)						
Re-use (c _i =0.79mg/g)						
Re-use (c _i =	0.79mg/g)					
Re-use (c _i =) MCC	0.79mg/g) q_{er}mg/g					
、 1	3. 37					
мсс	q _e ,mg/g					

Table 2. Constants obtained from the Langmuir and Freundlich sorption isotherms

Lang	muir con	Freundlich constants			
R ²	q _m (mg/g)	K _L (L/mg)	R ²	K _F	n
0.9999	909.09	1100	0.9109	288	18.21

Table 3. Kinetic data for the adsorption of dye RB 19 on magnetite/chitosan composite (C.=0.8 ma/mL)

(C _i =0.8 mg/mz)										
q _{e•exp}	Pseudo-first-order model			Pseudo-second-order model			Intra-particle diffusion model constants			
(mg/g)	<i>q_{e⁺calc}</i> (mg/g)	<i>k</i> 1 (h ⁻¹)	R ²	<i>q_{e⁺calc}</i> (mg/g)	k ₂ (g/mg/h)	R ²	<i>k_{id}</i> (mg/g/h ^{0.5})	R ²		
620.06	609.58	1.055	0.968	625	2.56	1	0.769	0.2734		

Conclusion

The procedure for removing RB 19 from simulated waste water using MCC as an adsorbent has been optimized with respect to the following parameters: sorbent mass (50 mg), solution pH (range 3-4), initial dye concentration (1 mg/mL) and contact time (2h). The maximum adsorption capacity is 909 mg/g. About 60% of the dye can be desorbed using aqueous NaOH solution with the addition of a non-ionic surfactant. The material may be re-used, but the capacity is about 26% lower.

REFERENCE:

[1] Polymer Bulletin, 67(1), 177-186 (2011)

ACKNOWLEDGEMENT:

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation CNCS/CCDI-UEFISCDI PN-III-P2-2.1-PED-2016-0456, within PNCDI III.