Polymer hybrid composite thin-films with tailored hydrophobic properties

Gianina Dodi*, Doina Hritcu, Dan Draganescu, Marcel Ionel Popa

Faculty of Chemical Engineering and Environmental Protection, Technical University of Iasi, D.Mangeron Rd, 700050, Romania.

This paper presents a simple and novel strategy to prepare hydrophobic composite coatings with unique micro/nano hierarchical surface roughness.

Radical polymerization of CS*g*

Batch/Composition		CSg-I1	CSg-I2	CSg-I3	CSg-I4	CSg-I5	CSg-I6	CSg-I7	CSg-I8	CSg-I9	CSg-I10	Coupling agent= pre-hydr gel solutio		ent= pre-hydr gel solutio	colyzed/precondensed sol- on of HSi ³	
CSg (1%	solid), mL	2	2	2	2	1	2	2	-	3	1					
EGDMA, μL		12	36	24	18	24	36	48	36	36	36	Wetting angle versus coating morphole		oating morphology:		
I,	μL	12	36	24	18	24	24	48	36	36	36	layer-by-layer				
Wetting a	Wetting angle versus hybrid polymeric binder composition: one layer											1. 1	CS/HSi+Fe₂O₄-		CSg-I2/HSi+Fe ₂ O ₄ -	
Glass slide	Glass slide CS		CS-H	Si	CSg-I	1/HSi	Si CSg-I2/HS		CSg-I3/HSi		Glass slide		³ NH ₂ /HSi ⁴		NH ₂ /HSi ³ ⁴	
Contact angle	78.1 ⁰		108.2 ⁰		89.2 ⁰		88.1 ⁰	11	3.1 ⁰		Con ang	itact gle	117.8 ⁰		145.8°	
Hysteresis	3.9 ⁰)	2.16)	4.9	90	5.3 ⁰		2.9 ⁰		Hyste	eresis		2.1 [°]	0.1 ⁰	

Wetting angle versus hybrid polymeric composition (EGDMA concentration): layer-by-layer

Wetting angle versus hybrid polymeric composition (CSg concentration): layer-by-layer

Glass slide	CSg-I2/HSi+Fe ₃ O ₄ - NH ₂ /HSi	CSg-I4/HSi+Fe ₃ O ₄ - NH ₂ /HSi	CSg-I7/HSi+Fe ₃ O ₄ - NH ₂ /HSi	Glass slide	CSg-I2/HSi+Fe ₃ O ₄ - NH ₂ /HSi	CSg-I8/HSi+Fe ₃ O ₄ - NH ₂ /HSi	CSg-I9/HSi+Fe ₃ O ₄ - NH ₂ /HSi	CSg- I10/HSi+Fe ₃ O ₄ - NH ₂ /HSi
Contact angle	145.8 ⁰	141.4 ⁰	141.7 ⁰	Contact angle	145.8. ⁰	148.1°	127.4 ⁰	138.6 ⁰
Hysteresis	0.10	1.52°	0.5 ⁰	Hysteresis	0.1 ⁰	1.3 ⁰	1 ⁰	1.3 ⁰

Coating morphology: layer-by-layer deposition of CSg-I2/HSi+Fe₃O₄-NH₂/HSi

Scratch test: critical adhesion load was 14.8 mN

Liquid droplets wetting/non-wetting capability

Reference 1. G. Dodi et al., Chem. Eng.J., 203 (2012) 130–141. 2. G. Dodi et al., J. Magn. Magn. Mater., 388 (2015) 49–58. 3. Spirk et al., Carbohyd. Polym., 93 (2013) 285–290

CONCLUSIONS

* Hybrid polymeric binder composition was studied in order to yield coatings with high wetting angle and good adherence to the substrate in a reproducible manner.

The addition of iron oxide nanoparticles during the curing stage and HSi sol–gel solution both into the matrix and the

nanoparticle suspension produced surfaces with hydrophobic properties.

The newly developed hybrid coating formulation is easy to apply by spraying and it has medium adherence to the substrate. Future work: ice-repellent studies.

ACKNOWLEDGEMENTS: This work was supported by a grant of the Ministry of National Education, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0433.